MySQL 索引的底层逻辑
The following article is from 政采云技术 Author 凌泉
第一时间收到文章更新
数据结构以及算法
索引的本质其实就是一种数据结构。我们都希望查询数据的速度能尽可能的快,因此数据库系统的设计者会从查询算法的角度进行优化。最基本的查询算法当然是顺序查找,这种复杂度为 O(n) 的算法在数据量很大时显然是糟糕的,好在计算机科学的发展提供了很多更优秀的查找算法,例如二分查找、二叉树查找等。如果稍微分析一下会发现,每种查找算法都只能应用于特定的数据结构之上,例如二分查找要求被检索数据有序,而二叉树查找只能应用于二叉查找树上,但是数据本身的组织结构不可能完全满足各种数据结构(例如,理论上不可能同时将两列都按顺序进行组织),所以,在数据之外,数据库系统还维护着满足特定查找算法的数据结构,这些数据结构以某种方式引用(指向)数据,这样就可以在这些数据结构上实现高级查找算法。这种数据结构,就是索引。
1.1 B-Tree
为了描述 B-Tree ,首先定义一条数据记录为一个二元组 [key, data] , key 为记录的键值,对于不同数据记录, key 是互不相同的;data 为数据记录除 key 外的数据。那么 B-Tree 是满足下列条件的数据结构:
d 为大于 1 的一个正整数,称为 B-Tree 的度。 h 为一个正整数,称为 B-Tree 的高度。 每个非叶子节点由 n-1 个 key 和 n 个指针组成,其中 d<=n<=2d 。 每个叶子节点最少包含一个 key 和两个指针,最多包含 2d-1 个 key 和 2d 个指针,叶节点的指针均为 null 。 所有叶节点具有相同的深度,等于树高 h 。 key 和指针互相间隔,节点两端是指针。 一个节点中的 key 从左到右非递减排列。 所有节点组成树结构。 每个指针要么为 null ,要么指向另外一个节点。 如果某个指针在节点 node 最左边且不为 null ,则其指向节点的所有 key 小于 v(key_1),其中 v(key_1) 为 node 的第一个 key 的值。 如果某个指针在节点 node 最右边且不为 null ,则其指向节点的所有 key 大于 v(key_m) ,其中 v(key_m) 为 node 的最后一个 key 的值。 如果某个指针在节点 node 的左右相邻 key 分别是 key_i 和 key{i+1} 且不为 null ,则其指向节点的所有 key 小于 v(key{i+1}) 且大于 v(key_i) 。
如下是一个 d = 2 的 B-Tree 示意图。
BTree_Search(node, key) {
if(node == null) return null;
foreach(node.key)
{
if(node.key[i] == key) return node.data[i];
if(node.key[i] > key) return BTree_Search(point[i]->node);
}
return BTree_Search(point[i+1]->node);
}
data = BTree_Search(root, my_key);
关于 B-Tree 有一系列有趣的性质,例如一个度为 d 的 B-Tree ,设其索引 N 个 key ,则其树高 h 的上限为 log_d((N+1)/2) ,检索一个 key ,其查找节点个数的渐进复杂度为 O(log_dN) 。从这点可以看出, B-Tree 是一个非常有效率的索引数据结构。
1.2 B+Tree
B-Tree 有许多变种,其中最常见的是 B+Tree ,例如 MySQL 就普遍使用 B+Tree 实现其索引结构。与 B-Tree 相比, B+Tree 有以下不同点:
每个节点的指针上限为 2d 而不是 2d+1 。 内节点不存储 data ,只存储 key ;叶子节点不存储指针。
如下是一个简单的 B+Tree 示意。
1.3 带有顺序访问指针的 B+Tree
一般在数据库系统或文件系统中使用的 B+Tree 结构都在经典 B+Tree 的基础上进行了优化,增加了顺序访问指针。
1.4 为什么使用 B-Tree / B+Tree
红黑树等数据结构也可以用来实现索引,但是文件系统及数据库系统普遍采用 B-/+Tree 作为索引结构,这一节将结合计算机组成原理相关知识讨论 B-/+Tree 作为索引的理论基础。一般来说,索引本身也很大,不可能全部存储在内存中,因此索引往往以索引文件的形式存储的磁盘上。这样的话,索引查找过程中就要产生磁盘 I/O 消耗,相对于内存存取, I/O 存取的消耗要高几个数量级,所以评价一个数据结构作为索引的优劣最重要的指标就是在查找过程中磁盘 I/O 操作次数的渐进复杂度。换句话说,索引的结构组织要尽量减少查找过程中磁盘 I/O 的存取次数。下面先介绍内存和磁盘存取原理,然后再结合这些原理分析 B-/+Tree 作为索引的效率。
主存存取原理
目前计算机使用的主存基本都是随机读写存储器 ( RAM ) ,现代 RAM 的结构和存取原理比较复杂,这里本文抛却具体差别,抽象出一个十分简单的存取模型来说明 RAM 的工作原理。
磁盘存取原理
上文说过,索引一般以文件形式存储在磁盘上,索引检索需要磁盘 I/O 操作。与主存不同,磁盘 I/O 存在机械运动耗费,因此磁盘 I/O 的时间消耗是巨大的。下图是磁盘的整体结构示意图。
局部性原理与磁盘预读
由于存储介质的特性,磁盘本身存取就比主存慢很多,再加上机械运动耗费,磁盘的存取速度往往是主存的几百分分之一,因此为了提高效率,要尽量减少磁盘 I/O 。为了达到这个目的,磁盘往往不是严格按需读取,而是每次都会预读,即使只需要一个字节,磁盘也会从这个位置开始,顺序向后读取一定长度的数据放入内存。这样做的理论依据是计算机科学中著名的局部性原理:当一个数据被用到时,其附近的数据也通常会马上被使用。程序运行期间所需要的数据通常比较集中。由于磁盘顺序读取的效率很高(不需要寻道时间,只需很少的旋转时间),因此对于具有局部性的程序来说,预读可以提高 I/O 效率。预读的长度一般为页 ( page ) 的整倍数。页是计算机管理存储器的逻辑块,硬件及操作系统往往将主存和磁盘存储区分割为连续的大小相等的块,每个存储块称为一页 (在许多操作系统中,页得大小通常为 4k ) ,主存和磁盘以页为单位交换数据。当程序要读取的数据不在主存中时,会触发一个缺页异常,此时系统会向磁盘发出读盘信号,磁盘会找到数据的起始位置并向后连续读取一页或几页载入内存中,然后异常返回,程序继续运行。
B-/+Tree 索引的性能分析
到这里终于可以分析 B-/+Tree 索引的性能了。上面说过一般使用磁盘 I/O 次数评价索引结构的优劣。先从 B-Tree 分析,根据 B-Tree 的定义,可知检索一次最多需要访问 h 个节点。数据库系统的设计者巧妙利用了磁盘预读原理,将一个节点的大小设为等于一个页,这样每个节点只需要一次 I/O 就可以完全载入。为了达到这个目的,在实际实现 B-Tree 还需要使用如下技巧:每次新建节点时,直接申请一个页的空间,这样就保证一个节点物理上也存储在一个页里,加之计算机存储分配都是按页对齐的,就实现了一个 node 只需一次 I/O 。B-Tree 中一次检索最多需要 h-1 次 I/O(根节点常驻内存),渐进复杂度为 O(h) = O(log_dN) 。一般实际应用中,出度d是非常大的数字,通常超过 100 ,因此 h 非常小(通常不超过 3 )。综上所述,用 B-Tree 作为索引结构效率是非常高的。而红黑树这种结构, h 明显要深的多。由于逻辑上很近的节点(父子)物理上可能很远,无法利用局部性,所以红黑树的I/O渐进复杂度也为 O(h) ,效率明显比 B-Tree 差很多。上面还说过, B+Tree 更适合外存索引,原因和内节点出度 d 有关。从上面分析可以看到, d 越大索引的性能越好,而出度的上限取决于节点内 key 和 data 的大小:d_{max} = floor(pagesize / (keysize + datasize + pointsize)) 。floor 表示向下取整。由于 B+Tree 内节点去掉了 data 域,因此可以拥有更大的出度,拥有更好的性能。
MySQL 的实现
在 MySQL 中,索引属于存储引擎级别的概念,不同存储引擎对索引的实现方式是不同的,本文主要讨论 MyISAM 和 InnoDB 两个存储引擎的索引实现方式。
2.1 MyISAM 索引实现
MyISAM 引擎使用 B+Tree 作为索引结构,叶节点的 data 域存放的是数据记录的地址。下图是 MyISAM 索引的原理图:
2.2 InnoDB 索引实现
虽然 InnoDB 也使用 B+Tree 作为索引结构,但具体实现方式却与 MyISAM 截然不同。第一个重大区别是 InnoDB 的数据文件本身就是索引文件。从上文知道, MyISAM 索引文件和数据文件是分离的,索引文件仅保存数据记录的地址。而在 InnoDB 中,表数据文件本身就是按 B+Tree 组织的一个索引结构,这棵树的叶节点 data 域保存了完整的数据记录。这个索引的 key 是数据表的主键,因此 InnoDB 表数据文件本身就是主索引。
总结
本文以 MySQL 数据库为研究对象,讨论与数据库索引相关的一些话题。特别需要说明的是, MySQL 支持诸多存储引擎,而各种存储引擎对索引的支持也各不相同,因此 MySQL 数据库支持多种索引类型,如 B-Tree 索引,哈希索引,全文索引等等。为了避免混乱,将只关注于 B-Tree 索引,因为这是平常使用 MySQL 时主要打交道的索引。
参考文献
[1] Baron Scbwartz 等 著,王小东等 译;高性能 MySQL(High Performance MySQL);电子工业出版社,2010 [2] Michael Kofler 著,杨晓云等 译;MySQL5权威指南(The Definitive Guide to MySQL5);人民邮电出版社,2006 [3] 姜承尧 著;MySQL 技术内幕-InnoDB 存储引擎;机械工业出版社,2011
一个 MySQL 隐式转换的坑,差点把服务器搞挂了 在MySQL中用UUID当主键,被组长给喷了! MySQL 使用规范 —— 如何建好字段和索引 MySQL 不一样的 NULL 除了 MySQL,这些数据库你都认识么?